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It is shown that if the Onsager-Casimir relations and the fluctuation- 
dissipation theorem are valid for a stationary, Gaussian, Markov process 
in an N-dimensional space, then these relations are valid when the process 
is projected into a subspace of the original space. Both time-reversal-even 
and time-reversal-odd variables are allowed. Previous derivations of the 
fluctuation-dissipation theorem for Brownian motion from fluctuating 
hydrodynamics are special cases of the present result. For the Brownian 
motion problem, the fluctuation-dissipation theorem is proven for the case 
of a compressible, thermally conducting fluid with a nonlocal equation of 
state. Arbitrary slip boundary conditions are considered as well. 

KEY WORDS: Fluctuation-dissipation theorem; Onsager-Casimir rela- 
tions; contracted description; Brownian motion. 

1. I N T R O D U C T I O N  

In  recent years a number  of  authors have derived a generalized Langevin 
equat ion for  Brownian mot ion  starting f rom linearized fluctuating hydro-  
dynamics. In  these derivations the mot ion  of  a particle immersed in a fluid 
is first described by linearized hydrodynamic  equations for  the fluid which 
are coupled through boundary  conditions at the particle-fluid interface to 
Newton ' s  equations for  the particle. R a n d o m  fluctuating forces are added to 
the hydrodynamic  equations in an a t tempt  to include a remnant  o f  the 
statistical foundat ion  o f  these equations. The stochastic properties o f  these 
forces are specified by means of  the fluctuation-dissipation theorem (FDT),  
which relates these stochastic properties to the phenomenological  coefficients 
appearing in the hydrodynamic  equations. 

To derive a Langevin equat ion for  the Brownian mot ion  of  the particle, 
the fluid variables are eliminated f rom the description. In  this way it is said 
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that the description has been contracted. The elimination is accomplished by 
solving for the fluid variables when the particle motion is given. The resulting 
flow is then used to compute the forces and torques acting on the particle 
which are caused by the fluid motion. Having done that, it is possible to write 
Newton's equations for the particle without explicit reference to the fluid 
degrees of freedom. If there are fluctuating forces in the original equations, 
then modified fluctuating forces will be present in the contracted equations. 
In addition, solving for the fluid variables in terms of a given particle motion 
introduces an element of history into the description in the form of memory 
functions. What is discussed in this work is a proof of the contracted FDT 
which relates the stochastic properties of the modified fluctuating forces of 
the contracted description to the memory functions appearing in the con- 
tracted description. The point of this discussion is the demonstration that 
contracted FDT can be derived when any stationary, Gaussian, Markov 
process is contracted, as long as the FDT and the Onsager-Casimir relations 
(OCR) hold for the original description of the process. We believe that the 
use of the OCR in this context is new, and that the contracted FDT has not 
before been proven for the more general processes considered here. 

Previously, the contracted FDT has been derived for a particle in a 
fluctuating fluid with various special boundary conditions and special con- 
straints on the fluid. Fox and Uhlenbeck (1~ proved the FDT for Brownian 
motion in an incompressible isothermal fluid when the motion is slow enough 
to allow inertial terms to be neglected; stick boundary conditions were used. 
Hauge and Martin-L6f (2~ extended the Fox-Uhlenbeck results to include 
inertial effects, again with stick boundary conditions in an incompressible 
fluid. Bedeaux and Mazur (a~ also proved the FDT in this situation, using 
Fourier transforms. Later Velarde and Hauge (4~ proved the FDT for slip 
boundary conditions. Chow and Hermans (5~ proved the theorem in a com- 
pressible but isothermal fluid for stick boundary conditions; and Bedeaux 
e t  al .  (6~ proved the theorem in an incompressible fluid for arbitrary slip 
boundary conditions. 

In each of the papers cited above one of the steps used to prove the 
contracted FDT involves the use of Green's reciprocal theorem to establish a 
connection between contracted and noncontracted fluctuating forces. In each 
case this Green's theorem, or reciprocal theorem, is proven by appeal to the 
special conditions of the problem considered. It has apparently not been 
recognized until now that this theorem is a consequence of the OCR. That 
this is so is shown in Section 2, where the OCR are discussed in a more 
general context than fluctuating hydrodynamics. A generalized Green's 
theorem is established [Eq. (18)] of which the Green's theorems used in Refs. 
1-6 are special cases. 

Fox and Uhlenbeck pointed out that fluctuating hydrodynamics uses 
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variables some of which are even under the time reversal (c~-variables) and 
others of which are odd under time reversal (/3-variables). For this reason Fox 
and Uhlenbeck derived fluctuating hydrodynamics by assuming it to be a 
stationary, Gaussian Markov process; they pointedly did not make use of 
arguments based on microscopic reversibility. Subsequent papers ~2-6~ also 
make no explicit use of microscopic reversibility and the OCR. Our general 
proof of the reciprocal theorem, which is used in Section 3 to prove the 
contracted FDT, shows that even though the matrix of phenomenological 
coefficients is not symmetric, it is still possible to exploit the property of 
microscopic reversibility as it is manifested in the OCR. 

In Section 3 it will be shown that if the OCR and the FDT are valid for 
a set of linear fluctuating equations which describe a stationary, Gaussian 
Markov process, then the FDT and the OCR continue to be valid for equa- 
tions which are contracted from the original equations. In addition, restrictions 
on the contraction process which are required for the validity of the FDT 
will be discussed. To a certain extent, a proof of the FDT in the generality 
considered here was given by Fox and Uhlenbeck. They showed that when a 
stationary, Gaussian Markov process is contracted according to an Enskog 
procedure, (1) the resulting process is also stationary and Markovian, and 
(2) the FDT for the contracted process holds to lowest order in the Enskog 
parameter. We show that in general the contracted description is non- 
Markovian; thus our proof of the FDT represents a generalization of the 
Fox-Uhlenbeck result to all orders in the Enskog parameter. 

In Section 4 we consider the special case of Brownian motion in the 
context of the general contraction procedure described in Sections 2 and 3. 
The contracted FDT is proven for a particle in a compressible, thermally 
conducting fluid with arbitrary slip boundary conditions. To extend the 
validity of the FDT to a fluid near its critical point, we allow the pressure 
to be a nonlocal functional of density fluctuations. (v~ In this way, as well as 
by allowing for thermal conduction, we extend the validity of the FDT 
beyond the cases considered in Refs. 1-6. 

2. G A U S S I A N ,  M A R K O V I A N  P R O C E S S E S  A N D  THE 
O N S A G E R - C A S I M I R  R E L A T I O N S  

In this section we review some results of nonequilibrium thermodynamics. 
The FDT and the OCR are derived for any Gaussian Markov process that 
models the approach to equilibrium of a physical system. Equation (7) gives 
a standard formulation of the FDT, while Eq. (16) is a concise statement 
of the OCR. We call Eq. (16) a local formulation of the OCR because it 
states that two matrices are equal element by element. Our goal in this 
section is to prove Eq. (18), which we regard as a global formulation of the 
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OCR. By a global formulation we mean one that equates integrals over all 
time of sums of matrix elements, rather than one that equates only individual 
matrix elements. The global OCR given in Eq. (18) is an abstract verSion of 
the various Green's theorems used in Refs. 1-6. In Section 4 the global OCR 
will be translated into the language of hydrodynamics. 

Let a(t)  be a finite-dimensional Markov process, where a(t)  represents 
the column vector {al(t), a2(t) ..... an(t)}. For a continuous system, the com- 
ponents of a(t)  will refer to various ceils of the system. We will assume that 
what we say about the finite processes can also be applied to continuous 
processes by way of using ever smaller cells. This procedure was followed by 
Fox and Uhlenbeck when they derived fluctuating hydrodynamics. 

The Markov process a(t)  is to be designed so that it simulates the ap- 
proach to equilibrium of a macroscopic system. This means that the averages 
( a ( t ) )  and (a ( t )a ( t  + s) r) must equal the corresponding averages of these 
variables in thermal equilibrium as t tends to infinity. AIso, the equation of 
motion of ( a ( t ) )  must be the phenomenological equation governing the 
evolution of the system to be simulated. We restrict ourselves to linear 
equations. 

For a(t)  we write 

da( t ) /d t  = - G a ( t )  + g( t )  (1) 

where G is an N • N matrix and g( t )  is a random N-dimensional force. We 
assume that ( g ( t ) )  = 0, from which it follows that 

d ( a ( t ) ) / d t  = - G ( a ( t ) )  (2) 

Only physical systems that can be adequately described by linear phenomen- 
ological equations are to be considered. Without loss of generality we assume 
that (a)~h = 0 where (.)t~ indicates the equilibrium average. The solution of 
Eq. (1) is given by 

P t 

a(t)  = e-~ + Jo e-aVg(t - .r) d1" (3) 

Let R and p(s )  be N • N matrices given by 

R - (aar)t~ and p(s )  = (a(O)a(s)r)t~ 

Then asymptotic consistency requires 

lim (a( t ) )~  = (a)th = 0 (4a) 
t -* ix) 

lim (a ( t )a ( t ) r )o  = R (4b) 
t ~ o o  

lim (a ( t )a ( t  + s)r)o = p(s )  (4c) 
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Condition (4a) implies that the eigenvalues of G have positive real parts, since 
this condition is to hold for arbitrary initial conditions. The notation (.)9 
indicates an average over all random forces g(t) .  

Because a(t) is to be a stationary, Gaussian Markov process, g is delta- 
correlated, i.e., (g(t)g(s)  T) is given by 

(g( t )g(s)  r )  = 2A ~(t - s)  (5) 

where A is another N • N matrix. Thus, condition (4b) and the solution, 
which is Eq. (3), imply 

R = e -  at2Ae- art dt (6) 

The FDT now follows by integrating Eq, (6) by parts. In this way, Eq. (6) 
implies 

2A = GR + RG ~ (7) 

In a similar fashion, condition (4c) implies the relation 

Re ar~ = p(s)  (8) 

Equation (8) is the Onsager regression hypothesis: the correlation function 
p(s)  decays according to the macroscopic law exp(-  Grs). 

Now consider the consequences of microscopic reversibility. We assume 
that the components of the vector a(t) are either a-variables or/3-variables. 
That is, they are either time-reversal-even or time-reversal-odd. Let a j t )  
denote even components of a(t) and /3~(t) denote odd components. Then 
microscopic reversibility implies the following relations<B>: 

@~(0)]3j(s))th = -- (a,(s)/3s(0))th (9a) 

@~(O)as(s))th = <a,(s)=j(O)>t~ (9b) 

(/3,(O)pj(s))t~ = (t3,(s)/3j(0))tn (%) 

Let P~ be a projection operator onto the space spanned by the a-variables 
and P~ be a projection operator onto the space spanned by/3-variables so that 

.P,~ + Po = 1 (lO) 

It is convenient to write p(s)  = p ~ ( s )  + pzB(s) + p ~ ( s )  + p ~ ( s ) ,  where 

p . . ( s )  = P . p ( s ) P . ;  PBe(s) = P~p(s)P~ 
(11) 

p ~ ( s )  = P.p(s)Pa;  pa.(s) = Pap(s)P.  

Then the symmetry relations expressed by Eq. (9) imply the relations 

p(s)~ = p(s)L, p(s)~ = -p(s )~ ,  p ( s ) .  = p(s)~ (12) 
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Note that the p matrices are N x N matrices. We emphasize that Eqs. (12) 
are consequences of microscopic reversibility and of the fact that the 
components of a(t)  are either a-variables or/3-variables. 

Because of the asymptotic consistency requirement expressed by Eq. (8), 
the following relations for G and R are implied by Eqs. (12): 

(RGr)~.  = ( G R ) ~  (13a) 

(RGr)~ = - ( G R ) ~  B (13b) 

( R C T ) ~  = - ( G R ) ~  (13c) 

(RGT)~B = (GR)Bz (13d) 

The a, fl subscripts are used here in the same way as they were used in Eq. 
( l l ) :  i.e., if M is a matrix, M~eis given by M ~  = P ~ M P e ,  etc. 

In the absence of a magnetic field the correlation between a and fl 
variables vanishes; i.e., @(0)~(0)) = 0. r This means that 

R~  = Re~ = 0 (14) 

In other words, the matrix R, which gives the variance of equilibrium 
fluctuations, does not connect a and fi variables. Henceforth we denote R ~  
and ReB by R~ and R e, respectively. Then we have 

R = R~ + R e and R-1 = Rg ~ + R i  1 

assuming the inverses indicated exist. 
In this notation Eq. (13b) becomes 

R,~Gr~ = G,~BR ~ (15) 

I f  we multiply Eq. (15) from the left and right by R g  1 and R21, respectively, 
we have 

GrBRi  l = R g  lG~ B 

Similar steps with the other relations (13) give 

G r S  -1 = S - 1 G  (16a) 

where the matrix S -  ~ is given by 

S -1 = R21  - R ;  1 (16b) 

Thus Eqs. (16) represent a reformulation of the OCR in a more concise form 
than heretofore found in the literature. We now use these equations to prove 
the global OCR referred to at the beginning of this section. 

The correlation between the random forces g( t )  is actually a generalized 
funct ion--a delta function. Its properties are determined by its effects on a 
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certain class of test functions. Our strategy for proving the contracted FDT 
will be to examine the action of the correlation function of the contracted 
fluctuating forces on a second class of test functions. These functions are 
chosen to be solutions of deterministic equations of motion, which are 
obtained by replacing the random force by a "sure" but arbitrary force. In 
this way information about the phenomenology is explicitly incorporated into 
the test functions. " 

Following this strategy we formulate the global form of the OCR by 
determining the action of S-1 in certain integrals. These integrals involve 
solutions to equations of motion derived from the fluctuating equation [Eq. 
(1)] by replacing the fluctuating force g(t)  by the "sure" but arbitrary forces 
F"~(t). 

Let a(~ for i = 1, 2, be solutions of the now deterministic equation 

da(~ = -Ga(~)(t) + F(~ i = 1, 2 (17) 

where the F(~ are nonfluctuating external forces arbitrary except for the 
restriction F")(t)  = 0 for It [ > To, where To is an arbitrary cutoff time and 
the a(~ are assumed to vanish for t < -To. 

With these conditions, the global OCR to be proven is the equality 

f dt F('(t)rS-la(2)(T- t)= f dt a ' l ' ( t ) r S - 1 F ( 2 ' ( T -  t) (18) 

which relates the distinct solutions of the two equations given as Eq. (17). 
Equation (18) is valid for all times T. (Every integration over time t in this 
paper extends over all time.) 

The primary ingredient in the proof of Eq. (18) is the local OCR given 
by Eqs. (16). The Green's theorems used by the various authors mentioned in 
the introduction are special cases of Eq. (18). 

We end this section by proving the central result: Eq. (18). Observe that 
because a(1)(t) = 0 for t < -To, and because a(1)(t) vanishes as t approaches 
infinity, we have 

0 = f dt (d/dt)[a(1)(t)rS - ~a(~)(T - t)] (19) 

To evaluate the integrand of Eq. (18), use the equation of motion given in 
Eq. (17): 

0 = f dt { -  am( t ) r [GrS  - 1 _ S -  1G]a(2)(T - t)} 

f dt [Fm(t)rS-la(2~(T - t) - a(Z)(t)rS-1F(2)(T - t)] (20) + 
d 
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The global OCR [Eq. (18)] follows immediately from Eqs. (20) and (16a) (the 
local form of the OCR). 

Note that no restrictions were required on the force F(2~(t). In particular, 
U2~(t) could be replaced by the fluctuating force g(t) of Eq. (1). Also note 
that Eq. (18) is an equality between two convolutions and is easily expressed 
in terms of Fourier transforms. It is used in this way by Bedeaux and Mazur (3~ 
and Chow and Hermans. (5~ In our statement of the FDT we will not need to 
worry about the propriety of Fourier-transforming a fluctuating force. 

3. C O N T R A C T I O N  A N D  THE F L U C T U A T I O N -  
D ISS IPAT ION T H E O R E M  

In this section it is shown that if the global OCR [Eq. (18)] and the FDT 
[Eq. (7)] are true for the process described by Eq. (1), then modified versions 
of these theorems hold in a contracted description of the process. The demon- 
stration of this fact is possible because the formal statement of  the global 
OCR allows the methods of Hauge and Martin-L6f (2~ to be generalized. 

First the FDT for the noncontracted description is written in a global 
form. Then the contraction is introduced and suitably restricted. Finally, the 
global OCR and the FDT in the original description are shown to yield the 
FDT for the contracted description. The contracted process is non-Markovian, 
or at least nonstationary. 2 We believe that the restrictions on the contraction 
which are sufficient to prove the contracted FDT are stated here for the first 
time. 

By contracting we mean considering only a subspace of the N-dimensional 
space of which a(t) is an element. That is, we restrict our attention to n < N 
components of a(t). Since the time evolution of a(t) is governed by a linear 
equation, it is possible to solve for those components that we do not want to 
retain in the description in terms of the remaining components of a(t). The 
result is used to write a linear equation for the n components of a(t) that are 
retained in terms of these components alone. Because a(t) is determined by a 
differential equation, the resulting equation will exhibit memory effects. The 
contraction procedure is best described using projection operators. 

Let P be a time-independent projection operator and let Q be its com- 
plement. The projection P defines the n components of a(t) that are to be 
retained, the so-called relevant components. The null space of P is the space 
spanned by the so-called irrelevant variables. Let b(~)(t) and b(t) be given by 

b(~(t) = Pa(t)(t); b(t) = Pa(t) (21) 

where i is either 1 or 2. 

2 See Fox Cm for a discussion of the nonstationary aspect of the contracted description. 
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The procedure described above yields equations of the following form 
for b(~)(t) and b(t): 

db(~)(t)/dt = - f2b(i)(t) - f I '(t  - s)b")(s)  ds + f ( ~  (22a) 

db( t ) /d t  = - f2b(t) - f I'(t - s)b(s)  ds + h( t )  (22b) 

The quantities ~ and I'(t) are N x N matrices such that 

Pf2P  = f] and P F ( t ) P  = I'(t) (23) 

I f  the force Fhas  no components in the irrelevant subspace, i.e., if Q F  (~ = O, 
then f(~) is given by 

f(o = p F , )  

However, since g( t )  is a random force, it cannot be assumed that Qg vanishes 
or that h(t)  is simply the P projection of g(t). We require that F(t) vanish for 
t less than zero. 

We will prove the FDT for the contracted process in the following local 
form: 

(h(O)h(t  - s )  ~) = (h ( s  - t)h(O) ~) = ( h ( s ) h ( t )  ~) 

= ~(t - s ) [ S , ~ T R y l S ,  + S , R ; I ~ S p ]  

+ Sp[Fr(s - t ) R ;  ~ + R ~ , W ( t  - s)JSp (24) 

where R j  ~ = P R - ~ P  and Sp = P S P .  To prove this equation it is sufficient 
to require that (a) the projection P commute with the projections P ,  and Pe, 
and (b) P commute with R. Condition (a) means that the projected variables, 
i.e., the relevant variables, must have a definite symmetry with respect to 
time reversal. Condition (a) would be violated, for example, if we chose a 
relevant variable to be a sum of  an a-variable and a/3-variable. Since the 
components of  a(t)  were required to have a definite time-reversal symmetry, 
it is only natural to require that the projected variables also have this property. 

Condition (b) means that if two variables are correlated in thermal 
equilibrium, it is not allowed to designate only one of them as a relevant 
variable. Condition (b) also means that a relevant variable cannot be a linear 
combination of variables that are uncorrelated in thermal equilibrium. If  
either condition (a) or (b) is violated, it is still possible to derive the contracted 
equations of motion, but there will be no guarantee that the contracted F D T 
is valid. We believe that conditions (a) and (b) for the validity of the contracted 
FDT have not been described before. Of course, these conditions are fulfilled 
in the Brownian motion problems considered in Refs. 1-6. However, none of 
these articles treated the problem of contracting linear fluctuating equations 
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and the requirements for preserving the FDT in the generality we treat the 
problem here. As mentioned in the introduction, Fox and Uhlenbeck C1~ did 
show that when Eq. (1) is contracted according to a Chapman-Enskog-like 
procedure, the contracted equation is Markovian to lowest order and that the 
FDT holds to lowest order in the expansion parameter. Our result generalizes 
that result to all orders in the Chapman-Enskog parameter and elucidates the 
role of time-reversal symmetry in deriving the complete contracted FDT. 

We know of two ways to prove the contracted FDT given conditions (a) 
and (b). The first is to find explicit expressions for f~, I'(t), and h(t)  in terms 
of Q, P, G, and g(t) .  This procedure is essentially that used in proofs of the 
FDT which follow Zwanzig-Mori projection operator methods. <~~ However, 
we are interested here only in the FDT and its relation to the OCR. In addi- 
tion, our aim is to present a proof which can be directly translated into the 
language of specific problems. Since explicit construction of F(t) is usually 
quite difficult, this method is hard to use in most problems. (For the Brownian 
motion, Bedeaux and Mazur (3> give a proof of the FDT along these lines, 
but that proof is restricted to spherical particles in an incompressible fluid.) 
By following the method described below we generalize the methods used in 
Refs. 1-6 in a way which is easy to mimic in specific instances. 

To prove the contracted FDT we first note that the original FDT, Eq. (7), 
implies the following equalities: 

R - 1 2 A R  -1 = R - 1 G  + G r R  -1 = S - 1 2 A S  -1 (25) 

The first equality follows from Eq. (7) by multiplying by R-  ~ from the left 
and from the right. The second equality follows from ~\ \ 

S - ~ R  = P~ - PB (26) \ 

and the local OCR, G r S  - ~ = S - ~ G ,  because we have 

S - 1 2 A S - 1  = S - 1 G R S - 1  + S - 1 R G r S  -1 

= S - 1 G ( P ~  - PB) + (P~ - Pe) GTS-~  

= G z S - I ( P .  - Pe) + ( P .  - P~)S -~G (27) 
and 

( p .  _ p B ) S -  1 = R -  1 = ( p .  _ pB)2R-  1 

The local form of the FDT given in Eq. (25) implies the following global 
statement of the FDT: 

f dt a<l)(t)rS - 1 2 A S -  ladle(t) 

= f  dt f d t ' a ~ ' ( t ) r S - ~ < g ( t ) g ( t ' ) ~ > S - ~ a m ( t  ') 

= f dt 2 a m ( t ) r R -  ~ F ~ ( t )  (28) 
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Equation (28) expresses the properties of the correlation matrix 
(g(t)g(t') r) by its action in integrals against the class of test functions a(~ 
which are solutions of the arbitrary but "sure" equations of motion given in 
Eq. (17). Equation (24) will be proven by determining the action of (h(t)h(t')r) 
in integrals against the text functions b(~ which are solutions of the "sure" 
equations given in Eq. (22a). 

To prove Eq. (28) note that because a(l~(t) vanishes for t less than -Tc  
and because a(l~(t) vanishes as t tends to infinity, the integral below vanishes, 
i.e., 

f dt (d/dt)[a(l~(t)rR-laC~)(t)] = 0 (29) 

The equality of the first and last integrals in Eq. (28) follows from Eq. (29) 
by using the equations of motion to carry out the differentiation indicated and 
then applying the local form of the FDT. The second integral is equal to the 
first because of Eq. (5). 

In Appendix A it is shown that if conditions (a) and (b) are satisfied in 
the form 

[P,P~] = [e, Pe] = [P, R -11 = 0 (30) 

then the OCR for the contracted description hold in the form 

f~TS;~ = Sy~f~ (31a) 

r T ( t ) s ;  ~ = s ; l r ( t )  (311o) 
If P = 1, then P(t) vanishes and f2 is just G. In this way the original local 
OCR are contained in the contracted local OCR. Hauge and Martin-L6f 
proved the contracted local OCR for the special case of Brownian motion in 
an isothermal, incompressible fluid. In that case all the variables are {3- 
variables since the temperature and pressure are fixed. Here both ~ and/3 
variables are allowed. 

With the contracted form of the local OCR, Eq. (31), it is possible to 
relate the contracted fluctuating force h(t) to the original fluctuating force 
g(t). This relationship and the global FDT given in Eq. (28) yield a proof of 
the contracted FDT. In Appendix B the following reciprocal theorem is 
proven: 

f dt h(t)rSf ~b(2~(T- t) = f act g(t)vSfla(2'(T- t) (32) 

provided PF(2)= f~2)= F(2). Both a(2)(t) and b(2)(t) are nonfluctuating 
quantities. 

To derive the contracted global FDT from this last equation, form the 
double integral 

I = ~ dt ~ dt b(2>(T - t)rS~ ~(h(t)h(s)T)S7 lb(2'(T t) (33) 
J J 
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The reciprocal theorem, Eq. (32), the relation between A and the stochastic 
properties of g(t) given in Eq. (5), and the global FDT given in Eq. (28) imply 
that I is also given by 

I = 2 f dt a(2)R- 1FC2~(t) (34) 

Since we have F (2~ = PF (2~ = f(2~ by assumption, and since [P, R-  ~] = 0, it 
follows that 

I = 2 f dt b~2)(t)TR~ ~f~2)(t) 

= f ds f dt b(~'(T- t ) rs ; l (h( t )h(S)r)s ;  ~b'~)(r- t) (35) 

Equation (35) is the global form of the contracted FDT. It is the contracted 
analog of Eq. (28). The local form of the contracted FDT, Eq. (24), can be 
derived from the global form by using the equation of motion for b(2~(t) to 
expressf(Z~(t) in terms of f~, l~(t), and b(2~(t). The equation of motion gives 
for the " su re"  force f (~(t)  

f(2~(t) = db(2~(t)/dt + ~2b(2~(t) + f ds P(t - s)b(2~(s) (36) 

Substituting for f(2)(t) in Eq. (35) gives 

I = 2 f dt [b(2)(t)R; ~ dbC2)(t)/dt] 

+ f dt f ds{3( t -  s)b(2'(t)[fFR; I + Ry~a]b(~'(s) 

+ b(2)(t)[r'r(s - t )R; ~ + R ; W ( t  - s)]b(2)(s)} (37) 

The first line of this equation vanishes because b(2~(t) vanishes at t = oo. 
Observe that b(~)(t) is arbitrary since it is driven by the arbitrary force PF (2~. 
Because b(Z~(t) is arbitrary, Eqs. (35) and (37) imply 

S ; I < h ( T -  t ) h ( T -  s)T)S;  ~ = ~(t -- s)(f2rR; 1 + Ry~f~) 

+ I'r(s - t )R;  ~ + R;zP(t  - s) (38) 

Multiplying both sides of this equation by S~ gives the local form of the 
contracted FDT, Eq. (24). The time T is also arbitrary and can be chosen to 
be t, s, or t + s. When P is the identity, P(t) vanishes and the contracted FDT 
becomes identical with the noncontracted FDT. This completes the derivation 
of the contracted FDT, Eq. (24). 
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The noncontracted FDT, Eq. (25), implies that 

2 A  = S R - 1 2 A R - 1 S  = ( P ~  - P e ) 2 A ( P ~  - P~) and 2 A ,  e = - 2 A ~ e  

(39) 
This means that A~ e vanishes and that there is no correlation between random 
forces associated with variables of different time-reversal symmetry. This is no 
longer the case in the contracted description. Using the relation R y l S p  = 

P ( P ~  - P B ) P  and the local OCR for f2 we can multiply the contracted FDT 
from the left by P~ and from the right by PB to find 

P ~ ( h ( O ) h ( t  - s ) T ) P e  = - R ~ F ~ e ( s  - t )  - I '~( t  - s ) R ~  (40) 

The local OCR for P(t) relates r ( t  - s )  to  W ( s  - t ) ,  not to Fr(t - s). Hence 
we have 

P ~ ( h ( O ) h ( t  - s ) r ) P e  = [F.B(s --  t )  --  r ~ a ( t  --  s ) ] R  e (41) 

Recalling that P(t) vanishes for negative times, we see that the force corre- 
lation function depends on the sign of t - s as well as its magnitude and that 
there is correlation between forces associated with different time-reversal 
symmetry in the contracted description. 

4. F L U C T U A T I N G  H Y D R O D Y N A M I C S  A N D  
B R O W N I A N  M O T I O N  

In this section we apply the considerations of the last two sections to the 
proof of the FDT for a particle submerged in a fluctuating, compressible, and 
thermally conducting fluid. Our method of proof allows for correlated density 
fluctuations at distinct points in the fluid as is required for the description of a 
fluid near its critical point. We do not allow for singular mass or entropy 
density at the particle-fluid interface, but we do allow a singular energy 
density there. The resulting surface effects do not affect the particle motion 
in the absence of interfacial mass density. 

This work differs from the work of Bedeaux et  al. ~6> in that the con- 
tracted FDT is proven without explicit construction of fluctuating forces 
which satisfy the noncontracted FDT. We do not introduce fluctuating 
surface forces as do Bedeaux e t  aL because our aim is to show only that i f  

fluctuating forces can be found which satisfy the noncontracted FDT, and 
/ fboundary conditions are consistent with microscopic reversibility, then the 
contracted FDT follows. By proving the contracted FDT without explicitly 
constructing fluctuating forces it is hoped that the role of microscopic 
reversibility will be exhibited more plainly. Microscopic reversibility as 
expressed by the global OCR, Eq. (18), is here regarded as a constraint on 
boundary conditions and constitutive relations sufficient to guarantee the 
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validity of the contracted FDT. This work also differs from earlier work in 
that we determine the matrix of correlations from fluctuations of the entropy 
itself rather than from the rate of entropy production. For the sake of com- 
pleteness we do finally present fluctuating forces which ensure the validity of 
the noncontracted FDT. 

We will show in this section how the general formulation of the last two 
sections can be expressed in terms of the specific language of linearized 
hydrodynamics. In this way it is shown how the proofs of the FDT given in 
Refs. 1-6 are special cases of the proof given in Section 3. 

The linearized hydrodynamic equations for a fluid-plus-particle system 
are 

o~p /o t  = 

pc~ 88T/St = 

po 8u/St = 

m dU/dt = 

j .aa/dt = 

Po V. u (42a) 

(~To/xz) V.u - V , q -  V.g (42b) 

V. P + V.s  (42c) 

- f  dS [fi-P + fi.s] + F(t) (42d) 

- (  dS [r • (P + s).fi] + M(t) (42e) 
J 

In these equations po and To are equilibrium values of the density and 
temperature of the fluid: 3p and 3T are small deviations of the density and 
temperature from po and To, respectively. The stress tensor is denoted by P. 
It can be written as 

P,j = - (P0 + 3P)3,s + % (43) 

where Po is the equilibrium pressure and 8p denotes deviations from Po. 
Since the constant pressure Po does not contribute to the equations of motion, 
we will henceforth use p, T, and p for 8p, 3T, and 8p. The pressure p is to be 
determined from the equation of state of the fluid in terms of p and T. 
Normally p is given by a local equation 

p(r, t) = aT(r, t)/x~ + p(r, t)/(PoX~) (44) 

where XT is the isothermal compressibility and ~ is the coefficient of thermal 
expansion in the fluid. However, in a fluid near its critical point, the equation 
of state may be nonlocal. Then p will be given by an equation of the form 

p(r, t) = (,4x~-)T(r, t) + po Q(r, r')p(r't) d3r (45) 

where Q(r, r') describes the correlation of density fluctuations, al) In this 
section, volume integrals will be understood to be over the volume of the 
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fluid outside the particle, and surface integrals will be understood as ranging 
over the particle surface. It is consistent with the linearization to neglect the 
motion of the particle in the surface and volume integration limits52~ The 
vector fi points normal from the fluid into the particle. We assume the fluid 
to be only bounded by the particle surface. Integrands will all be assumed to 
vanish at infinity. 

The stress tensor ~ and the heat flux vector q must be determined by 
phenomenological constitutive relations. These will be specified later. The 
quantities s~j and g~ are random stresses and heat fluxes. The divergences of 
these quantities play the role of the random forces g(t )  in Sections 2 and 3. 
The heat capacity per unit mass at constant volume is denoted by cv; U is the 
velocity of the Brownian particle and g~ is its angular velocity. The mass of 
the particle is rn and d is its inertia tensor. External forces and torques are 
denoted by F and M. In writing Eq. (42) we implicitly assume that there is no 
surface momentum, mass, or entropy density. On the other hand, depending 
on the boundary conditions, there may be surface entropy production. 

The hydrodynamic equations involve linear differential operators, whereas 
the equations of motion in Sections 2 and 3 involve only finite-dimensional 
matrix operators. By imagining the fluid to be divided into many small cells 
and replacing derivatives by finite differences, the proof of the FDT given 
above can be applied to the present case. The position variable r acts here as 
another label for the components of the vector a(t). 

The equations of motion must be completed by specifying boundary 
conditions. These will be given below along with the constitutive relations. 
The deterministic equations analogous to Eq. (42) which yield solutions 
appropriate for use in the global OCR and FDT are found simply by setting 
s and g equal to specified functions s (~ and g(~. We will assume s "~ and g"~ 
vanish at the particle surface. In the deterministic case, F = F (~, M = M (~. 

The first task in applying the scheme described in Sections 2 and 3 is to 
determine the matrix of equilibrium correlations R. In previous work on this 
subject the matrix R has been determined from the rate of entropy produc- 
tion, which in turn is found from the rate of energy dissipation. (~-6~ In general, 
there will be entropy production at the fluid-particle interface which depends 
on the precise nature of the boundary conditions. Velarde and Hauge (~ were 
able to extend the results of Hauge and Martin-L/Sf (2) to the case of slip 
boundary conditions precisely because in both the stick and slip cases there 
is no surface entropy production. This is the unrecognized accidental feature 
of these cases referred to by Velarde and Hauge. (~ Bedeaux et al. (6~ were able 
to treat the arbitrary slip case because they recognized that in that case there 
is a singular entropy production density at the surface. 

Here we determine R directly from the entropy associated with fluctu- 
ations from equilibrium. The reason for proceeding in this way is that to prove 
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the contracted FDT we need only show that the boundary conditions are 
consistent with microscopic reversibility. It is not really necessary to know 
how much entropy is produced by the fluid sliding over the particle surface, 
if the noncontracted FDT is assumed. 

Small fluctuations of the vector a(t) from equilibrium are assumed to be 
described by a Gaussian distribution; consistency requires that the distribu- 
tion be given by 

P(a) = C exp[ -  arR-  la[2] (46) 

This choice assures us that equilibrium correlations are given by R. On the 
other hand, we assume that the fluid-plus-particle system is maintained in 
thermal equilibrium by a heat reservoir at temperature To. The probability of 
a fluctuation is therefore given by 

P(a) = C' exp[-E(a)/(kBTo)] (47) 

where E(a) is the nonnegative energy associated with the fluctuation a and kB 
is Boltzmann's constant. At equilibrium E and a vanish. For small fluctu- 
ations, E(a) can be expanded to second order in a, and R-  1 can be determined 
by comparing Eqs. (46) and (47). Since E is a minimum in equilibrium, R-  ~ 
is found to be 

R~ ~ = (1/kBTo) a2E/~a, ~aj (48) 

In the fluid-plus-particle system the variation of E from equilibrium at 
constant volume is given by 

2E = f dar [8(2)(pe) + pu 2] + mU 2 + S2. d.  ~ (49) 

where 8(2)(pe)(r) is the second-order local deviation of the internal energy of 
the fluid from equilibrium. Near a critical point it is expected that density 
fluctuations will be correlated over macroscopic distances. We therefore write 
8(2~(pe) as 

poCv T(r)2 + f K(r, ' r")p(r')p(r") dar ' dar" (50) 3~2)(Pe)(r) = -~o r ,  

That the kernel K(r, r', r") may be nonvanishing for r '  r r" means that there 
is a possibility of correlated density fluctuations at distinct points. That 
K(r, r', r") depends on r allows for the fact that a fluid containing a particle 
is not homogeneous. Nonlocal equations of state of this type are discussed by 
Gitterman and Kontorovich. ~1) A kernel which gives rise to nonhomogeneous 
fluctuations is discussed by Lubensky and Rubin (~z) in the context of mean 
field theory for a spin system when there is a bounding surface. Following 
Gitterman and Kontorovich, (1~) we assume only local correlation for tempera- 
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ture fluctuations. The kernel K is introduced here only to show that such a 
generalized equation of state is easily treated in the context of our proof  of 
the FDT. 

Pressure fluctuations are related to density and temperature fluctuations 

3F ~ f p(r) = Po ~ + Xr-- ~T(r) = Q(r, r')e(r') dar ' + xr ~-- T(r) (51) 

where Q(r', r") is given by 

' r " )  (52) Q(r', r") = d3r K(r, r ,  

If there is a singularity in the pressure at the particle surface, it cannot 
contribute to the particle motion because the momentum density is 
nonsingular. 

In the case of  a particle in a fluid we identify the vector of a(t) of Sections 
2 and 3 as 

a(t) = {p(r, t), T(r, t), u(r, t), U(t), ~(t)} (53) 

The components of  the vector a(t) are thus specified by two labels: the spatial 
variable r and one of p, T, u~, U~, or f2~, where i = 1, 2, 3. 

Combining Eqs. (49) and (50) and comparing Eq. (46) with Eq. (47) gives 

~ (poCJTo) ~(r - r') 0 0 

kBTR- 1 = 0 po 1 8(r - r') 0 (54) 

0 0 M1 

0 0 0 J_l 

Since the fields p(r, t) and T(r, t) are a-variables and U(r, t), U(t), and ~( t )  
are fl-variables, S -  1 is given by 

kBToS -~ = kBTo(R; ~ - R~ -1) 

i (poc~/To)~(r - r') 0 0 
= 0 --001 8(r -- r') 0 (55) 

0 0 - m l  

0 0 0 - J J  

This completes the specification of  R - i  and S-1. 
Equations (42) can be solved when the driving forces V.g, V.s,  F(t), and 

M(t)  are given. As in Section 2, we consider two sets of driving forces (denoted 
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by superscripts i = 1, 2) which vanish for It I greater than an arbitrary cutoff 
time To. In each case all fields are assumed to vanish for t < -To .  In the 
language of Section 2 the deterministic driving forces are 

{0, V.g(i)/pc~, V.s(~ (1/m)F(~)(t), J -  1M(~)(t)} (56) 

where the s <~> are assumed to vanish at the particle surface. The solutions of 
the equations of motion with these driving forces must satisfy the global OCR 
given by Eq. (18). Using our explicit expression for S -1, given in Eq. (55), 
and the forces given in Eq. (56), we find for the global OCR 

1 (2) f dt f d3r {V.g(1)(r, t)Too T ( r , T - t ) -  V.s(1)(r, t).u(2)(r,T - t)} 

- f  dt {F(1)(t).U(2)(T- t) + M(1)(t).K~(2)(T- t)) 

- f  dt (U(1)(t).F(2)(T- t) + ~(1)(t).M(2)(T- t)} (57) 

The kernel Q(r, r') does not enter into Eq. (57), because there is no source 
term for the density in the equations of motion. Equation (57) is a conse- 
quence of microscopic reversibility. It must be valid for any proper choice of 
boundary conditions and constitutive relations. The appearance of the kernel 
Q in the equation of state means that extra boundary conditions are required 
to solve the equations of motion. However, we show below that the boundary 
condition for the density at the particle surface has no bearing on the validity 
of Eq. (57), whereas the boundary conditions for the temperature and the 
fluid velocity do influence the validity of Eq. (57). The equations of motion 
can be used to replace the forces appearing in the reciprocal theorem by time 
derivatives and flux terms. The flux terms can be integrated by parts. The 
time derivatives can be integrated and give vanishing results. The conclusion 
of these manipulations is that Eq. (57) is equivalent to the following result: 

1 (2), fdtfdS(fi.[-~oq(1)(r,t)T(2)(r,T-t)-T(~)(r,t)To q (r, T -  t)] 

+ [fi.P(1)(r, t).A(2)(r, T - t) - A(~)(r, t).P(2)(r, T - t).fi]~ 
J 

+ f dt f d3r ([a~))(r, t)Vu(2)(rT-i y , ,  t ) -  Viu~l)(r, t'la~2.)(rT , , ,  t)] 

To [qC~)(r' t) 'vr(2)(r '  r - t) - VT(1)(r, t).q(2)(r, 7' - 0] 

= o (58)  
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Details are shown in Appendix C. In this equation N~(r, t) denotes the 
difference between the fluid velocity and the surface velocity of the particle 
at the interface. It is given by 

A(~ t) = urn(r, t) - U(~(t) - $2(~)(t) X r, r ~ S, i = 1, 2 (59) 

If  the constitutive relations are 

q(O = _ • V T ( O  (60a) 

a~. ~ = ~(Viu} ~ + vju~" -.(o _ {8~j V �9 u m) + ~8~j V.u (i~ (60b) 

where K is a constant thermal conductivity, V a constant shear viscosity, and 
s r is a constant bulk viscosity, and if the boundary conditions are (r ~ S, 
i =  1,2) 

-flA"~(r, t) = fi.cr(~.(1 - tiff) (61a) 

~Tm(r, t) = fi.qm(r, t) (61b) 

where ~ and/3 are constants, then it is easy to see that Eq. (58), which is 
equivalent to the OCR, is satisfied. 

The contracted FDT in this case can be proved by translating the steps 
leading to Eq. (24) into the present notation. Here we only note that, following 
Hauge and Martin-L6f, it is convenient to denote the vector 

[ir [i1 P ~ - Pa ( t )  (62) 

by b(t) .  This equation defines the projection P for the case of Brownian 
motion. The variables U and ~ are the relevant variables. Let the operator 
L be k B T o R ;  ~ and note that R~; ~ = S~L Again following Hauge and Martin- 
L6f, (2~ we write the contracted equations of motion as 

L db( t ) /d t  = f 7(t  - s )b (s )  ds + h( t )  (63) 

where Ph( t )  = h(t)  is a fluctuating force and P V ( t ) P  = V(t). In the present 
notation the contracted FDT becomes 

(h ( t )h ( s ) r~  = k~To[yr(s  - t )  + y(t - s)] (64) 

This is formally identical to the result of Hauge and Martin-L6f, (2) but we 
have shown that it has wider applicability. It follows from the general con- 
siderations of  Section 3 for the particular case of a compressible, thermally 



76 D . H .  Berman 

conducting fluid with boundary conditions consistent with microscopic 
reversibility. 

Of course, the proof of Eq. (64) depends on the validity of the non- 
contracted FDT. The noncontracted FDT is established by finding fluctuating 
forces such that Eq. (28) is satisfied when the boundary conditions given in 
Eq. (61) are used. Such forces must have a singularity on the particle surface 
since there is dissipation there. This point is discussed by Bedeaux et al. ~6) 
Suffice it to say here that we can write the fluctuating force of Eq. (28) as 

{ V.g  V.s  l f s . f ~ d S , _ j _ ~ f r X s . f ~ d S  ) (65) g(t) = O, poc~, po ' m 

With the constitutive equations (60) and the boundary conditions (61), if g 
and s are chosen to have the following stochastic properties, then Eq. (28) 
will be satisfied. Write 

where 

and 

g(r, t) = g~l)(r, t) + g~2)(r, t) (66a) 

Likewise write 

(g~l)(r, t)) = 0 for r ~ S (66d) 

s(r, t) = s~l)(r, t) + s~2)(r, t) (67a) 

where 

(s")(r, t)> = 0 (67b) 

(s}~)(r, t)s~]~(r ', t')> = 2k~To3,b 3(r - r') 3(t - t ') 

• [~ (3~b j ,  + 3iz3jk ) + ((~) - 2~)/3)3i~8kl] (67C) 

and 

sin(r, t) = 0 for r ~ S (67d) 

The noncontracted FDT will be satisfied if we take 

K(1) ...1_ K(2) = ~ ,  ~(2) ~ 0~ 

The bulk viscosity ~<z) is arbitrary. 

(g")(r, t)) = 0 (66b) 

(g~)(r, t)g~J)(r ', t')> = 8ij3~z 8(r - r') 3(t - t')2(k~To)Tou ") (66c) 
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This construction does not depend on the density boundary conditions. 
The arbitrariness of ~:(~ results from there being no surface mass density. 

This completes the derivation of the contracted FDT for Brownian 
motion. 

A P P E N D I X  A 

Assume that P commutes with P~, Rg 1, and R -1. With this assumption 
we prove the OCR given in the text in Eq. (31). 

Let J be given by 

f dt d [ba)(t)rS; lb(2~( T _ t)] (AI) J 

Because bin(t) and b(2~(t) vanish for t < -To ,  J vanishes. Using the con- 
tracted equations of motion, the differentiation in the integrand of Eq. (A1) 
can be performed, giving 

0 = f dt {bm( t ) r ( fUS;  1 - S;If2)b(2~(T - t) 

- [ fm( t ) rSy lb (2~ (T -  t) - b(1)(t)rSyZf(2~(T- t)]} 

+ f dt f ds [b(1)(s)rFr(t-  s ) S ;  lb(2~(T- t) 

- b ( ~ ( t ) r S y W ( T -  t - s)b(2~(s)] (A2) 

In the second double integral let T - s ~ z, t --+ s, and z --+ t. Then Eq. (t%2) 
becomes 

0 = f dt f ds (b'Z)(s)r{3(t- s)[f2rS~ -1 s; 

+ [ r ~ ( t  - s ) S ;  ~ - s ; ~ r ( s  - t ) ] } b ( 2 ~ ( T -  t ) )  

f dt [f(z~(t)rSgZb(2~(T - t) - ba~(t)rS~,lf(2~(T - t)] (A3) 

We are free to choose F (1~ and F (2~ at will. We choose these forces such 
that QF (~ = QF (2) = 0 a n d f  m = PFa~; f (2~ = PF  (2~. Then the last integral 
of Eq. (A3) becomes 

f [Fm(t)~'S - la(2~(T - t) - am(t)rS-1F(2)(T - dt t)] (A4) 

because the commutator of P with S-  ~ vanishes. The original, noncontracted 
OCR, Eq. (18), shows that the expression given in Eq. (A4) vanishes. This 
means that the double integral in Eq. (A3) vanishes for arbitrarily driven 
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bCl~(t) and b~2~(t). This in turn implies the contracted OCR, Eq. (31). The 
solutions bin(t) and b<2~(t) are used as test functions here. 

A P P E N D I X  B 

In this appendix we give a proof of Eq. (32) in the text. We begin by 
noting that the integral J given in Eq. (A1) vanishes for arbitrary b(l~(t) 
because b~m(t) vanishes at both ends of the integration. In particular, if we 
replace bin(t) by the fluctuating quantity b(t) we have 

= f dt d [b(t)rS;lb(m(T _ /)] (B1) 0 j '  

Again, as in Appendix A, use the contracted equation of motion to perform 
the differentiation in the integrand. This procedure yields 

0 

+ [ W ( t  - s ) S ;  ~ - s ; ~ r ( s  - t ) ] } b < 2 ) ( T -  t ) )  

- f dt [ h ( t ) T S g ~ b r  - t )  - b(t)rS;lfr t)] (B2) 

The double integral has been treated in the same way that we treated the 
double integral of Appendix A. Now, however, we can use the result of 
Appendix A, the contracted OCR, to show that the first integrals in Eq. (B2) 
vanish, leaving 

f dth(t)rS;lb<2)(T - t) = f dtb(t)rSylfl2)(T - t) (B3) 

By assumption f~2) = pFcz), and this means that the right side of Eq. (B3) 
becomes 

f dt b( t )rSy~f lm(T-  t ) =  f dt b( t )rSylF~m(T- t) 
J J 

= f dt a(t)rS~lFC2~(T - t) 

= f dt a(t)rS - 1F~2~ (B4) 

These equalities follow from the definitions 

S;  1 = PS-  1p and b(t) = Pa(t) 
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and the assumption that P commutes with R-~. Combining Eqs. (B3), (B4), 
and (B2) gives Eq. (32). 

A P P E N D I X  C 

In this appendix we give a few of the details leading to Eq. (58). First 
consider the integral/1 given by 

f dt f d3r [V.gmT ~2) - T m V.g ~2>] 

W L + .oC,X  

- T m | ~  + + V .q  <~ (C1) 
poCvXT poCv 

Quantities with superscript (1) are understood to have arguments (r, t); those 
with superscript (2) have arguments (r, T - t). The time derivatives combine 
to give (~/Ot)(Ta>T (2>) and, as usual, integrals involving these terms vanish. 
The integral/1 thus reduces to 

It = f d' f dar {(a/Xr)[V.ur '2' - T (1) V'u  (2'] 

x (1/To)[V.q(1)T (2) - T <1) V.q~2)]} (C2) 

Let the integral 12 be given by 

= f dt d3r[-V.s('. ,(2' + u( ' .V.s% 

( fau(2) Oua)l 

N 

+ [V.  P(~).u <2) - u (*). V .  P~)]~ (C3) 

Again the first terms vanish. Integrating by parts gwes 

i2= f dt f ds 

+ f dar [ _  p(1):Vu(2) + Vum: p(2~] (C4) 

Even though there is a singularity in the pressure tensor at the particle 
surface, the stress tensors appearing here are the same as those appearing in 
the equations of motion of the particle. The reason is that there is no surface 
mass density and momentum must be conserved. 
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We define the integral Ia by 

Ia = - f  dt [F(1).U (2~ + M(~).~ (2) - U(1).F (2) - ~(1),M(2)] 

= - f  dt j d2S [ 4 . P m . U  (2, + ( a (2 ) •  r ) . P m . 4  

- U m .  P(~).fi - ( n  m X r).  p(2).fi] (C5) 

With these definitions, Eq. (57) can be written as 

0 =,rl + ~ + I~ 

= f dt( f d~r[(,qXr)(V.u(1)T(2)- T(~)V.u (2)) 
+ (1/To)(V'q(1)T(2> - T m V. q(2)) _ ( p ( 1 ) :  Vu(2) _ Vu(1): p(2))] 

( dS [fi. P m . A  (2) - A (1). P(2).4]; (C6) + 
J ) 

where 

A(~)(r, t) = u(*)(r, t) - UCi)(t) - ~(o X r, r ~ S, i = 1, 2 

Now examine the quantity 14 which appears in Eq. (C6) and is given by 

I~=fdtfd3r[P(1):Vn(2)- Vua): P(2q 

= f dt f dar [_p(1)V.u(2) + V.u(1)p(2) + cr Vu(1):c;(2)] (C7) 

In Equation (C7), p(~)(r, t) is given by the equation of state 

p(r, t) = (~/xr)T(r, t) + Po f d 8v' Q(r, r')(r', t) (C8) 

The kernel Q(r, r ') can be assumed to be a symmetric function of its argu- 
ments. The contribution of  terms involving Q(r, r') to 14 is 

~p(2) 
f dt f d3r f d3r' [-Q(r,r')pm(r', t)-bT(r, T -  t) 

8P(~) ] + ~ (r, t )Q(r,  r')p(2)(r ', T - t)  

= - dt--~ dar dar ' p(1)(r, t)Q(r,r')p(2)(r ', T -  t) = 0 (C9) 
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Therefore Eq. (C7) becomes 

I~=  ~ dt f d3r [-(~/Xr)(T~t' V .u~2 ' -  V.u( l 'T  ~2') 

+ (cr~l~:Vu ~2~ _ Vu~l~:cr~2~)] 

Using the result in Eq. (C6) and integrating terms involving V.q by parts 
gives Eq. (58) of the text. 
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